Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
J Vis Exp ; (205)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38557602

The interaction of iron and oxygen is an integral part of the development of life on Earth. Nonetheless, this unique chemistry continues to fascinate and puzzle, leading to new biological ventures. In 2012, a Columbia University group recognized this interaction as a central event leading to a new type of regulated cell death named "ferroptosis." The major feature of ferroptosis is the accumulation of lipid hydroperoxides due to (1) dysfunctional antioxidant defense and/or (2) overwhelming oxidative stress, which most frequently coincides with increased content of free labile iron in the cell. This is normally prevented by the canonical anti-ferroptotic axis comprising the cystine transporter xCT, glutathione (GSH), and GSH peroxidase 4 (GPx4). Since ferroptosis is not a programmed type of cell death, it does not involve signaling pathways characteristic of apoptosis. The most common way to prove this type of cell death is by using lipophilic antioxidants (vitamin E, ferrostatin-1, etc.) to prevent it. These molecules can approach and detoxify oxidative damage in the plasma membrane. Another important aspect in revealing the ferroptotic phenotype is detecting the preceding accumulation of lipid hydroperoxides, for which the specific dye BODIPY C11 is used. The present manuscript will show how ferroptosis can be induced in wild-type medulloblastoma cells by using different inducers: erastin, RSL3, and iron-donor. Similarly, the xCT-KO cells that grow in the presence of NAC, and which undergo ferroptosis once NAC is removed, will be used. The characteristic "bubbling" phenotype is visible under the light microscope within 12-16 h from the moment of ferroptosis triggering. Furthermore, BODIPY C11 staining followed by FACS analysis to show the accumulation of lipid hydroperoxides and consequent cell death using the PI staining method will be used. To prove the ferroptotic nature of cell death, ferrostatin-1 will be used as a specific ferroptosis-preventing agent.


Boron Compounds , Cerebellar Neoplasms , Cyclohexylamines , Medulloblastoma , Phenylenediamines , Humans , Lipid Peroxidation/physiology , Antioxidants/pharmacology , Iron/metabolism , Glutathione/metabolism , Lipid Peroxides , Phenotype
2.
Biofactors ; 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38299761

Recently, we characterized the ferroptotic phenotype in the liver of diabetic mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2) inactivation as an integral part of hepatic injury. Here, we aim to investigate whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes-induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice were divided into four groups: control (vehicle-treated), diabetic (streptozotocin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated (2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group (2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic molecules critical for antioxidative defense (catalase, superoxide dismutases, thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferroportin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system, cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathione reductase (GR) were reversed/increased by sulforaphane treatment. In addition, we found that the ferroptotic phenotype in diabetic liver is associated with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the increased level of GSH, decreased accumulation of labile iron and lipid peroxides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver damage (decreased fibrosis, alanine aminotransferase, and aspartate aminotransferase). Finally, diabetes-induced increase in serum glucose and triglyceride level was significantly reduced by sulforaphane. Regardless of the fact that this study is limited by the use of one model of experimentally induced diabetes, the results obtained demonstrate for the first time that sulforaphane prevents diabetes-induced hepatic ferroptosis in vivo through the activation of Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related pathologies.

3.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Article En | MEDLINE | ID: mdl-36552620

Glutathione peroxidase 4 (GPX4) has been reported as one of the major targets for ferroptosis induction, due to its pivotal role in lipid hydroperoxide removal. However, recent studies pointed toward alternative antioxidant systems in this context, such as the Coenzyme Q-FSP1 pathway. To investigate how effective these alternative pathways are in different cellular contexts, we used human colon adenocarcinoma (CRC) cells, highly resistant to GPX4 inhibition. Data obtained in the study showed that simultaneous pharmacological inhibition of GPX4 and FSP1 strongly compromised the survival of the CRC cells, which was prevented by the ferroptosis inhibitor, ferrostatin-1. Nonetheless, this could not be phenocopied by genetic deletion of FSP1, suggesting the development of resistance to ferroptosis in FSP1-KO CRC cells. Considering that CRC cells are highly glycolytic, we used CRC Warburg-incompetent cells, to investigate the role metabolism plays in this phenomenon. Indeed, the sensitivity to inhibition of both anti-ferroptotic axes (GPx4 and FSP1) was fully revealed in these cells, showing typical features of ferroptosis. Collectively, data indicate that two independent anti-ferroptotic pathways (GPX4-GSH and CoQ10-FSP1) operate within the overall physiological context of cancer cells and in some instances, their inhibition should be coupled with other metabolic modulators, such as inhibitors of glycolysis/Warburg effect.

4.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36012572

Cell death plays an important role in diabetes-induced liver dysfunction. Ferroptosis is a newly defined regulated cell death caused by iron-dependent lipid peroxidation. Our previous studies have shown that high glucose and streptozotocin (STZ) cause ß-cell death through ferroptosis and that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, improves ß-cell viability, islet morphology, and function. This study was aimed to examine in vivo the involvement of ferroptosis in diabetes-related pathological changes in the liver. For this purpose, male C57BL/6 mice, in which diabetes was induced with STZ (40 mg/kg/5 consecutive days), were treated with Fer-1 (1 mg/kg, from day 1-21 day). It was found that in diabetic mice Fer-1 improved serum levels of ALT and triglycerides and decreased liver fibrosis, hepatocytes size, and binucleation. This improvement was due to the Fer-1-induced attenuation of ferroptotic events in the liver of diabetic mice, such as accumulation of pro-oxidative parameters (iron, lipofuscin, 4-HNE), decrease in expression level/activity of antioxidative defense-related molecules (GPX4, Nrf2, xCT, GSH, GCL, HO-1, SOD), and HMGB1 translocation from nucleus into cytosol. We concluded that ferroptosis contributes to diabetes-related pathological changes in the liver and that the targeting of ferroptosis represents a promising approach in the management of diabetes-induced liver injury.


Diabetes Mellitus, Experimental , Ferroptosis , Animals , Diabetes Mellitus, Experimental/metabolism , Iron/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
5.
Cancers (Basel) ; 14(13)2022 Jun 28.
Article En | MEDLINE | ID: mdl-35804926

The conceptualization of a novel type of cell death, called ferroptosis, opens new avenues for the development of more efficient anti-cancer therapeutics. In this context, a full understanding of the ferroptotic pathways, the players involved, their precise role, and dispensability is prerequisite. Here, we focused on the importance of glutathione (GSH) for ferroptosis prevention in pancreatic ductal adenocarcinoma (PDAC) cells. We genetically deleted a unique, rate-limiting enzyme for GSH biosynthesis, γ-glutamylcysteine ligase (GCL), which plays a key role in tumor cell proliferation and survival. Surprisingly, although glutathione peroxidase 4 (GPx4) has been described as a guardian of ferroptosis, depletion of its substrate (GSH) led preferentially to apoptotic cell death, while classical ferroptotic markers (lipid hydroperoxides) have not been observed. Furthermore, the sensitivity of PDAC cells to the pharmacological/genetic inhibition of GPx4 revealed GSH dispensability in this context. To the best of our knowledge, this is the first time that the complete dissection of the xCT-GSH-GPx4 axis in PDAC cells has been investigated in great detail. Collectively, our results revealed the necessary role of GSH in the overall redox homeostasis of PDAC cells, as well as the dispensability of this redox-active molecule for a specific, antioxidant branch dedicated to ferroptosis prevention.

6.
Oxid Med Cell Longev ; 2022: 3873420, 2022.
Article En | MEDLINE | ID: mdl-35320979

The main pathological hallmark of diabetes is the loss of functional ß-cells. Among several types of ß-cell death in diabetes, the involvement of ferroptosis remains elusive. Therefore, we investigated the potential of diabetes-mimicking factors: high glucose (HG), proinflammatory cytokines, hydrogen peroxide (H2O2), or diabetogenic agent streptozotocin (STZ) to induce ferroptosis of ß-cells in vitro. Furthermore, we tested the contribution of ferroptosis to injury of pancreatic islets in an STZ-induced in vivo diabetic model. All in vitro treatments increased loss of Rin-5F cells along with the accumulation of reactive oxygen species, lipid peroxides and iron, inactivation of NF-E2-related factor 2 (Nrf2), and decrease in glutathione peroxidase 4 expression and mitochondrial membrane potential (MMP). Ferrostatin 1 (Fer-1), ferroptosis inhibitor, diminished the above-stated effects and rescued cells from death in case of HG, STZ, and H2O2 treatments, while failed to increase MMP and to attenuate cell death after the cytokines' treatment. Moreover, Fer-1 protected pancreatic islets from STZ-induced injury in diabetic in vivo model, since it decreased infiltration of macrophages and accumulation of lipid peroxides and increased the population of insulin-positive cells. Such results revealed differences between diabetogenic stimuli in determining the destiny of ß-cells, emerging HG, H2O2, and STZ, but not cytokines, as contributing factors to ferroptosis and shed new light on an antidiabetic strategy based on Nrf2 activation. Thus, targeting ferroptosis in diabetes might be a promising new approach for preservation of the ß-cell population. Our results obtained from in vivo study strongly justify this approach.


Diabetes Mellitus , Ferroptosis , Insulin-Secreting Cells , Cell Death , Humans , Hydrogen Peroxide
7.
Adv Exp Med Biol ; 1301: 7-24, 2021.
Article En | MEDLINE | ID: mdl-34370285

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with a dismal 5-year survival rate of 5% and very limited efficacy of the current therapeutic regimens. The lethality of PDAC stems from asymptomatic early stage of the disease, its propensity to rapidly disseminate, as well as unusual, dense and highly active surrounding stroma. Fortunately, promising literature data suggests that exploiting newly contextualized type of cell death, termed "ferroptosis", has great potential for overcoming the major problems regarding PDAC treatment. A major player in this type of cell death is Glutamate/Cystine antiporter - xCT, which is responsible for the uptake of oxidized form of cysteine, and thus maintenance of intracellular amino acid and redox homeostasis. xCT seems to fulfill all requirements of the solid and specific molecular target for ferroptosis-based anti-cancer therapy. In this chapter we summarized mounting literature data supporting this hypothesis, but also, we pointed out some of the underexamined aspects of xCT-dependent (patho)physiology of the cancer cell, which have to be addressed in future studies. The abstract could be used as "informative abstract" for the online version.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/drug therapy , Cell Death , Cystine/metabolism , Humans , Oxidation-Reduction , Pancreatic Neoplasms/drug therapy
8.
Cancers (Basel) ; 13(6)2021 Mar 21.
Article En | MEDLINE | ID: mdl-33801101

In our previous study, we showed that a cystine transporter (xCT) plays a pivotal role in ferroptosis of pancreatic ductal adenocarcinoma (PDAC) cells in vitro. However, in vivo xCTKO cells grew normally indicating that a mechanism exists to drastically suppress the ferroptotic phenotype. We hypothesized that plasma and neighboring cells within the tumor mass provide a source of cysteine to confer full ferroptosis resistance to xCTKO PDAC cells. To evaluate this hypothesis, we (co-) cultured xCTKO PDAC cells with different xCT-proficient cells or with their conditioned media. Our data unequivocally showed that the presence of a cysteine/cystine shuttle between neighboring cells is the mechanism that provides redox and nutrient balance, and thus ferroptotic resistance in xCTKO cells. Interestingly, although a glutathione shuttle between cells represents a good alternative hypothesis as a "rescue-mechanism", our data clearly demonstrated that the xCTKO phenotype is suppressed even with conditioned media from cells lacking the glutathione biosynthesis enzyme. Furthermore, we demonstrated that prevention of lipid hydroperoxide accumulation in vivo is mediated by import of cysteine into xCTKO cells via several genetically and pharmacologically identified transporters (ASCT1, ASCT2, LAT1, SNATs). Collectively, these data highlight the importance of the tumor environment in the ferroptosis sensitivity of cancer cells.

9.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article En | MEDLINE | ID: mdl-33375025

The mechanistic target of rapamycin complex 1 (mTORC1) integrates signals from growth factors and nutrients to control biosynthetic processes, including protein, lipid, and nucleic acid synthesis. Dysregulation in the mTORC1 network underlies a wide array of pathological states, including metabolic diseases, neurological disorders, and cancer. Tumor cells are characterized by uncontrolled growth and proliferation due to a reduced dependency on exogenous growth factors. The genetic events underlying this property, such as mutations in the PI3K-Akt and Ras-Erk signaling networks, lead to constitutive activation of mTORC1 in nearly all human cancer lineages. Aberrant activation of mTORC1 has been shown to play a key role for both anabolic tumor growth and resistance to targeted therapeutics. While displaying a growth factor-independent mTORC1 activity and proliferation, tumors cells remain dependent on exogenous nutrients such as amino acids (AAs). AAs are an essential class of nutrients that are obligatory for the survival of any cell. Known as the building blocks of proteins, AAs also act as essential metabolites for numerous biosynthetic processes such as fatty acids, membrane lipids and nucleotides synthesis, as well as for maintaining redox homeostasis. In most tumor types, mTORC1 activity is particularly sensitive to intracellular AA levels. This dependency, therefore, creates a targetable vulnerability point as cancer cells become dependent on AA transporters to sustain their homeostasis. The following review will discuss the role of AA transporters for mTORC1 signaling in cancer cells and their potential as therapeutic drug targets.


Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/metabolism , Signal Transduction/physiology , Amino Acid Transport Systems/genetics , Animals , Cell Proliferation/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mutation , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
10.
Cell Death Dis ; 11(9): 789, 2020 09 23.
Article En | MEDLINE | ID: mdl-32968052

Contextualisation of the new type of cell death called "ferroptosis" opened a completely new avenue for the development of anti-cancer therapies. Cumulative fundamental research dating back to the mid-20th century, crowned by the extraordinary work of the group led by Dr. Stockwell from Columbia University in 2012, finally got its candidature to be applied in the clinical settings. Although the potential for clinical importance is undoubtedly growing every day, as showed by the increasing number of papers dealing with ferroptosis and its applications, long experience of cancer research and treatment taught us that caution is still necessary. The plasticity of the tumour cells, particularly acute, along with its involvement in the resistance mechanisms, that have been seen, to greater or lesser extent, for almost all currently used therapies, represents the biggest fascinations in biomedical research field and also the biggest challenge to achieving cures in cancer patients. Accordingly, the main features of fundamental research have to be vigilance and anticipation. In this review, we tried to summarize the literature data, accumulated in the past couple of years, which point out the pitfalls in which "ferroptosis inducers" can fall if used prematurely in the clinical settings, but at the same time can provide a great advantage in the exhausting battle with cancer resistance. This is the first comprehensive review focusing on the effects of the cell-to-cell contact/interplay in the development of resistance to ferroptosis, while the contribution of cell-born factors has been summarized previously so here we just listed them.


Cell Communication/physiology , Cell Death/physiology , Ferroptosis , Iron , Neoplasms/pathology , Cell Death/drug effects , Drug Resistance/physiology , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Iron/metabolism , Iron/pharmacology , Neoplasms/metabolism
11.
Front Oncol ; 10: 723, 2020.
Article En | MEDLINE | ID: mdl-32457843

Cancer cells are characterized as highly proliferative at the expense of enhancement of metabolic rate. Consequently, cancer cells rely on antioxidant defenses to overcome the associated increased production of reactive oxygen species (ROS). The reliance of tumor metabolism on amino acids, especially amino acid transport systems, has been extensively studied over the past decade. Although cysteine is the least abundant amino acid in the cell, evidences described it as one of the most important amino acid for cell survival and growth. Regarding its multi-functionality as a nutrient, protein folding, and major component for redox balance due to its involvement in glutathione synthesis, disruption of cysteine homeostasis appears to be promising strategy for induction of cancer cell death. Ten years ago, ferroptosis, a new form of non-apoptotic cell death, has been described as a result of cysteine insufficiency leading to a collapse of intracellular glutathione level. In the present review, we summarized the metabolic networks involving the amino acid cysteine in cancer and ferroptosis and we focused on describing the recently discovered glutathione-independent pathway, a potential player in cancer ferroptosis resistance. Then, we discuss the implication of cysteine as key player in ferroptosis as a precursor for glutathione first, but also as metabolic precursor in glutathione-independent ferroptosis axis.

12.
Cancers (Basel) ; 12(5)2020 Apr 30.
Article En | MEDLINE | ID: mdl-32365833

A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative glycolysis has long been considered as one of the major metabolic pathways that allows energy production and provides intermediates for the anabolic growth of cancer cells. Although such a vision has been crucial for the development of clinical imaging modalities, it has become now evident that in contrast to prior beliefs, mitochondria play a key role in tumorigenesis. Recent findings demonstrated that a full genetic disruption of the Warburg effect of aggressive cancers does not suppress but instead reduces tumor growth. Tumor growth then relies exclusively on functional mitochondria. Besides having fundamental bioenergetic functions, mitochondrial metabolism indeed provides appropriate building blocks for tumor anabolism, controls redox balance, and coordinates cell death. Hence, mitochondria represent promising targets for the development of novel anti-cancer agents. Here, after revisiting the long-standing Warburg effect from a historic and dynamic perspective, we review the role of mitochondria in cancer with particular attention to the cancer cell-intrinsic/extrinsic mechanisms through which mitochondria influence all steps of tumorigenesis, and briefly discuss the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.

14.
Cancer Res ; 79(15): 3877-3890, 2019 08 01.
Article En | MEDLINE | ID: mdl-31175120

Although chemoresistance remains a primary challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC), exploiting oxidative stress might offer novel therapeutic clues. Here we explored the potential of targeting cystine/glutamate exchanger (SLC7A11/xCT), which contributes to the maintenance of intracellular glutathione (GSH). Genomic disruption of xCT via CRISPR-Cas9 was achieved in two PDAC cell lines, MiaPaCa-2 and Capan-2, and xCT-KO clones were cultivated in the presence of N-acetylcysteine. Although several cystine/cysteine transporters have been identified, our findings demonstrate that, in vitro, xCT plays the major role in intracellular cysteine balance and GSH biosynthesis. As a consequence, both xCT-KO cell lines exhibited amino acid stress with activation of GCN2 and subsequent induction of ATF4, inhibition of mTORC1, proliferation arrest, and cell death. Tumor xenograft growth was delayed but not suppressed in xCT-KO cells, which indicated both the key role of xCT and also the presence of additional mechanisms for cysteine homeostasis in vivo. Moreover, rapid depletion of intracellular GSH in xCT-KO cells led to accumulation of lipid peroxides and cell swelling. These two hallmarks of ferroptotic cell death were prevented by vitamin E or iron chelation. Finally, in vitro pharmacologic inhibition of xCT by low concentrations of erastin phenocopied xCT-KO and potentiated the cytotoxic effects of both gemcitabine and cisplatin in PDAC cell lines. In conclusion, our findings strongly support that inhibition of xCT, by its dual induction of nutritional and oxidative cellular stresses, has great potential as an anticancer strategy. SIGNIFICANCE: The cystine/glutamate exchanger xCT is essential for amino acid and redox homeostasis and its inhibition has potential for anticancer therapy by inducing ferroptosis.


Ablation Techniques/methods , Cystine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Nutrients/genetics , Animals , Cell Culture Techniques , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Oxidative Stress
15.
J Biol Chem ; 293(8): 2877-2887, 2018 02 23.
Article En | MEDLINE | ID: mdl-29326164

The transporters for glutamine and essential amino acids, ASCT2 (solute carrier family 1 member 5, SLC1A5) and LAT1 (solute carrier family 7 member 5, SLC7A5), respectively, are overexpressed in aggressive cancers and have been identified as cancer-promoting targets. Moreover, previous work has suggested that glutamine influx via ASCT2 triggers essential amino acids entry via the LAT1 exchanger, thus activating mechanistic target of rapamycin complex 1 (mTORC1) and stimulating growth. Here, to further investigate whether these two transporters are functionally coupled, we compared the respective knockout (KO) of either LAT1 or ASCT2 in colon (LS174T) and lung (A549) adenocarcinoma cell lines. Although ASCT2KO significantly reduced glutamine import (>60% reduction), no impact on leucine uptake was observed in both cell lines. Although an in vitro growth-reduction phenotype was observed in A549-ASCT2KO cells only, we found that genetic disruption of ASCT2 strongly decreased tumor growth in both cell lines. However, in sharp contrast to LAT1KO cells, ASCT2KO cells displayed no amino acid (AA) stress response (GCN2/EIF2a/ATF4) or altered mTORC1 activity (S6K1/S6). We therefore conclude that ASCT2KO reduces tumor growth by limiting AA import, but that this effect is independent of LAT1 activity. These data were further supported by in vitro cell proliferation experiments performed in the absence of glutamine. Together these results confirm and extend ASCT2's pro-tumoral role and indicate that the proposed functional coupling model of ASCT2 and LAT1 is not universal across different cancer types.


Adenocarcinoma/metabolism , Amino Acid Transport System ASC/metabolism , Colonic Neoplasms/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Lung Neoplasms/metabolism , Minor Histocompatibility Antigens/metabolism , Neoplasm Proteins/metabolism , Absorption, Physiological/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/genetics , Animals , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation , Clone Cells , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Female , Gene Deletion , Gene Knockout Techniques , Glutamine/metabolism , Humans , Large Neutral Amino Acid-Transporter 1/chemistry , Large Neutral Amino Acid-Transporter 1/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1/agonists , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Transport Modulators/pharmacology , Mice, Nude , Minor Histocompatibility Antigens/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Transplantation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
16.
Adv Biol Regul ; 68: 55-63, 2018 05.
Article En | MEDLINE | ID: mdl-29306548

The evolution of life from extreme hypoxic environments to an oxygen-rich atmosphere has progressively selected for successful metabolic, enzymatic and bioenergetic networks through which a myriad of organisms survive the most extreme environmental conditions. From the two lethal environments anoxia/high O2, cells have developed survival strategies through expression of the transcriptional factors ATF4, HIF1 and NRF2. Cancer cells largely exploit these factors to thrive and resist therapies. In this review, we report and discuss the potential therapeutic benefit of disrupting the major Myc/Hypoxia-induced metabolic pathway, also known as fermentative glycolysis or "Warburg effect", in aggressive cancer cell lines. With three examples of genetic disruption of this pathway: glucose-6-phosphate isomerase (GPI), lactate dehydrogenases (LDHA and B) and lactic acid transporters (MCT1, MCT4), we illuminate how cancer cells exploit metabolic plasticity to survive the metabolic and energetic blockade or arrest their growth. In this context of NRF2 contribution to OXPHOS re-activation we will show and discuss how, by disruption of the cystine transporter xCT (SLC7A11), we can exploit the acute lethal phospholipid peroxidation pathway to induce cancer cell death by 'ferroptosis'.


Cell Death/physiology , Animals , Cell Death/genetics , Cell Line, Tumor , Humans , Lactate Dehydrogenases/metabolism , Lactic Acid/metabolism , Oxidative Stress/physiology
17.
Oncotarget ; 8(50): 87623-87637, 2017 Oct 20.
Article En | MEDLINE | ID: mdl-29152106

As Otto Warburg first observed, cancer cells largely favor fermentative glycolysis for growth even under aerobic conditions. This energy paradox also extends to rapidly growing normal cells indicating that glycolysis is optimal for fast growth and biomass production. Here we further explored this concept by genetic ablation of fermentative glycolysis in two fast growing cancer cell lines: human colon adenocarcinoma LS174T and B16 mouse melanoma. We disrupted the upstream glycolytic enzyme, glucose-6-phosphate isomerase (GPI), to allow cells to re-route glucose-6-phosphate flux into the pentose-phosphate branch. Indeed, GPI-KO severely reduced glucose consumption and suppressed lactic acid secretion, which reprogrammed these cells to rely on oxidative phosphorylation and mitochondrial ATP production to maintain viability. In contrast to previous pharmacological inhibition of glycolysis that suppressed tumor growth, GPI-KO surprisingly demonstrated only a moderate impact on normoxic cell growth. However, hypoxic (1% O2) cell growth was severely restricted. Despite in vitro growth restriction under hypoxia, tumor growth rates in vivo were reduced less than 2-fold for both GPI-KO cancer cell lines. Combined our results indicate that exclusive use of oxidative metabolism has the capacity to provide metabolic precursors for biomass synthesis and fast growth. This work and others clearly indicate that metabolic cancer cell plasticity poses a strong limitation to anticancer strategies.

18.
Front Oncol ; 7: 319, 2017.
Article En | MEDLINE | ID: mdl-29312889

A fine balance in reactive oxygen species (ROS) production and removal is of utmost importance for homeostasis of all cells and especially in highly proliferating cells that encounter increased ROS production due to enhanced metabolism. Consequently, increased production of these highly reactive molecules requires coupling with increased antioxidant defense production within cells. This coupling is observed in cancer cells that allocate significant energy reserves to maintain their intracellular redox balance. Glutathione (GSH), as a first line of defense, represents the most important, non-enzymatic antioxidant component together with the NADPH/NADP+ couple, which ensures the maintenance of the pool of reduced GSH. In this review, the central role of amino acids (AAs) in the maintenance of redox homeostasis in cancer, through GSH synthesis (cysteine, glutamate, and glycine), and nicotinamide adenine dinucleotide (phosphate) production (serine, and glutamine/glutamate) are illustrated. Special emphasis is placed on the importance of AA transporters known to be upregulated in cancers (such as system xc-light chain and alanine-serine-cysteine transporter 2) in the maintenance of AA homeostasis, and thus indirectly, the redox homeostasis of cancer cells. The role of the ROS varies (often described as a "two-edged sword") during the processes of carcinogenesis, metastasis, and cancer treatment. Therefore, the context-dependent role of specific AAs in the initiation, progression, and dissemination of cancer, as well as in the redox-dependent sensitivity/resistance of the neoplastic cells to chemotherapy are highlighted.

19.
Reprod Fertil Dev ; 28(3): 319-27, 2016 Mar.
Article En | MEDLINE | ID: mdl-25033890

Developmental dysfunction in embryos, such as a lethal level of fragmentation, is assumed to be mitochondrial in origin. This study investigated the molecular basis of mitochondrial impairment in embryo fragmentation. Transcription patterns of factors that determine mitochondrial functionality: (i) components of the oxidative phosphorylation (OXPHOS) - complex I, cytochrome b, complex IV and ATP synthase; (ii) mitochondrial membrane potential (MMP); (iii) mitochondrial DNA (mtDNA) content and (iv) proteins involved in mitochondrial dynamics, mitofusin 1 (Mfn1) and dynamin related protein 1 (Drp1) were examined in six-cells Day 3 non-fragmented (control), low-fragmented (LF) and high-fragmented (HF) human embryos. Gene expression of mitochondria-encoded components of complex I and IV, cytochrome b and mtDNA were increased in HF embryos compared with control and LF embryos. In LF embryos, expression of these molecules was decreased compared with control and HF embryos. Both classes of fragmented embryos had decreased MMP compared with control. LF embryos had increased gene expression of Mfn1 accompanied by decreased expression of Drp1, while HF embryos had decreased Mfn1 expression but increased Drp1 expression. The study revealed that each improper transcriptional (in)activation of mitochondria-encoded components of the OXPHOS during early in vitro embryo development is associated with a decrease in MMP and with embryo fragmentation. The results also showed the importance of mitochondrial dynamics in fragmentation, at least in the extent of this process.


Blastocyst/metabolism , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Blastocyst/ultrastructure , Cytochromes b/genetics , Cytochromes b/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Dynamins , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Embryo Culture Techniques , Fertilization in Vitro , GTP Phosphohydrolases/genetics , Gene Expression Regulation , Humans , Membrane Potential, Mitochondrial , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/genetics , Mitochondria/ultrastructure , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transcription, Genetic , Transcriptional Activation
20.
Redox Biol ; 6: 409-420, 2015 Dec.
Article En | MEDLINE | ID: mdl-26381917

Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies.


Alzheimer Disease/metabolism , Nerve Tissue Proteins/metabolism , Parkinson Disease/metabolism , Prion Diseases/metabolism , Protein Processing, Post-Translational , Reactive Oxygen Species/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Autophagy/genetics , Humans , Nerve Tissue Proteins/genetics , Oxidation-Reduction , Parkinson Disease/genetics , Parkinson Disease/pathology , Prion Diseases/genetics , Prion Diseases/pathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Unfolded Protein Response/genetics
...